Highlights
- •This study investigated the generation of synthetic computed tomography for magnetic resonance only radiotherapy in the abdominal area.
- •The network cycle-consistent generative adversarial network was used, which can be trained on unpaired data.
- •The allocation of Hounsfield units for mobile air pockets in the synthetic computed tomography were in agreement with the magnetic resonance.
- •The dosimetric comparison between the synthetic and planning computed tomography showed excellent agreement.
Abstract
Background and purpose
Materials and methods
Results
Conclusions
Keywords
1. Introduction
- Mayinger M.
- Ludwig R.
- Christ S.M.
- Dal Bello R.
- Ryu A.
- Weitkamp N.
- et al.
- Wahlstedt I.
- Andratschke N.
- Behrens C.P.
- Ehrbar S.
- Gabryś H.S.
- Schüler H.G.
- et al.
- Tocco B.R.
- Kishan A.U.
- Ma T.M.
- Kerkmeijer L.G.W.
- Tree A.C.
- Placidi L.
- Romano A.
- Chiloiro G.
- Cusumano D.
- Boldrini L.
- Cellini F.
- et al.
- Masitho S.
- Szkitsak J.
- Grigo J.
- Fietkau R.
- Putz F.
- Bert C.
- Lyu Y.
- Fu J.
- Peng C.
- Zhou S.K.
- Fu J.
- Singhrao K.
- Cao M.
- Yu V.
- Santhanam A.P.
- Yang Y.
- et al.
- Lenkowicz J.
- Votta C.
- Nardini M.
- Quaranta F.
- Catucci F.
- Boldrini L.
- et al.
- Fu J.
- Singhrao K.
- Cao M.
- Yu V.
- Santhanam A.P.
- Yang Y.
- et al.
2. Materials and methods
2.1 Dataset
2.2 Image acquisition and pre-processing
2.3 Network architecture
2.4 Training
2.5 Evaluation
3. Results
3.1 Image comparison between sCT and dCT

Metric | Mean ± SD |
---|---|
MAE | 70.10 ± 18.97 |
MSE | 2158 ± 529 |
PSNR | 39.02 ± 1.00 |
SSIM | 0.981 ± 0.009 |
FID | 21.41 |

3.2 Dosimetric comparison between sCT and dCT



4. Discussion
- Fu J.
- Singhrao K.
- Cao M.
- Yu V.
- Santhanam A.P.
- Yang Y.
- et al.
- Fu J.
- Singhrao K.
- Cao M.
- Yu V.
- Santhanam A.P.
- Yang Y.
- et al.
Declaration of Competing Interest
Acknowledgments
Appendix A. Supplementary data
- Supplementary data 1
References
- MR-guidance in clinical reality: Current treatment challenges and future perspectives.Radiat Oncol. 2019; : 14https://doi.org/10.1186/s13014-019-1308-y
- Magnetic resonance-guided radiation therapy: a review.J Med Imaging Radiat Oncol. 2020; 64: 163-177https://doi.org/10.1111/1754-9485.12968
- The transformation of radiation oncology using real-time magnetic resonance guidance: A review.Eur J Cancer. 2019; 122: 42-52https://doi.org/10.1016/j.ejca.2019.07.021
- Benefit of replanning in MR-guided online adaptive radiation therapy in the treatment of liver metastasis.Radiat Oncol. 2021; 16https://doi.org/10.1186/s13014-021-01813-6
- Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency.J Appl Clin Med Phys. 2020; 21: 70-79https://doi.org/10.1002/acm2.13030
- Gating has a negligible impact on dose delivered in MRI-guided online adaptive radiotherapy of prostate cancer.Radiother Oncol. 2022; https://doi.org/10.1016/j.radonc.2022.03.013
- Medical physics challenges in clinical MR-guided radiotherapy.Radiat Oncol. 2020; : 15https://doi.org/10.1186/s13014-020-01524-4
- The rationale for MR-only treatment planning for external radiotherapy.Clin Transl Radiat Oncol. 2019; 18: 60-65https://doi.org/10.1016/j.ctro.2019.03.005
- MR-guided radiotherapy for prostate cancer.Front Oncol. 2020; 10616291https://doi.org/10.3389/fonc.2020.616291
- On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: clinical and dosimetric considerations.Tech Innov Patient Support Radiat Oncol. 2020; 15: 15-21https://doi.org/10.1016/j.tipsro.2020.06.001
- Treatment plan quality during online adaptive re-planning.Radiat Oncol. 2020; 15: 203https://doi.org/10.1186/s13014-020-01641-0
- MR-based synthetic CT generation using a deep convolutional neural network method.Med Phys. 2017; 44: 1408-1419https://doi.org/10.1002/mp.12155
- Deep learning based synthetic-CT generation in radiotherapy and PET: A review.Med Phys. 2021; 48: 6537-6566https://doi.org/10.1002/mp.15150
- A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer.Phys Imaging Radiat Oncol. 2020; 14: 24-31https://doi.org/10.1016/j.phro.2020.04.002
- Synthetic computed tomography data allows for accurate absorbed dose calculations in a magnetic resonance imaging only workflow for head and neck radiotherapy.Phys Imaging Radiat Oncol. 2021; 17: 36-42https://doi.org/10.1016/j.phro.2020.12.007
- Feasibility of artificial-intelligence-based synthetic computed tomography in a magnetic resonance-only radiotherapy workflow for brain radiotherapy: two-way dose validation and 2D/2D kV-image-based positioning. Phys Imaging.Radiat Oncol. 2022; https://doi.org/10.1016/j.phro.2022.10.002
Korsholm ME, Waring LW, Edmund JM. A criterion for the reliable use of MRI-only radiotherapy; 2014.
- A systematic review of the clinical implementation of pelvic magnetic resonance imaging-only planning for external beam radiation therapy.Int J Radiat Oncol Biol Phys. 2019; 105: 479-492https://doi.org/10.1016/j.ijrobp.2019.06.2530
- Dosimetric effects of air pocket during magnetic resonance-guided adaptive radiation therapy for pancreatic cancer.Prog Med Phys. 2019; 30: 104https://doi.org/10.14316/pmp.2019.30.4.104
- A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases.Radiother Oncol. 2020; 153: 205-212https://doi.org/10.1016/j.radonc.2020.10.018
Zhu J-Y, Park T, Isola P, Efros AA. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE Int. Conf. Comput. Vis. ICCV, 2017, p. 2242–51. 10.1109/ICCV.2017.244.
- U-DuDoNet: unpaired dual-domain network for CT metal artifact reduction.in: de Bruijne M. Cattin P.C. Cotin S. Padoy N. Speidel S. Zheng Y. Med. Image Comput. Comput. Assist. Interv. – MICCAI 2021. Springer International Publishing, Cham2021: 296-306https://doi.org/10.1007/978-3-030-87231-1_29
- Multichannel residual conditional GAN-leveraged abdominal pseudo-CT generation via Dixon MR images.IEEE Access. 2019; 7: 163823-163830https://doi.org/10.1109/ACCESS.2019.2951924
- Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy.Biomed Phys Eng Express. 2020; 6015033https://doi.org/10.1088/2057-1976/ab6e1f
- Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours.Radiother Oncol. 2020; 153: 220-227https://doi.org/10.1016/j.radonc.2020.09.056
- Abdominal synthetic CT generation from MR Dixon images using a U-net trained with “semi-synthetic” CT data.Phys Med Biol. 2020; : 65https://doi.org/10.1088/1361-6560/ab8cd2
- Deep learning-based synthetic CT generation for MR-only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator.J Appl Clin Med Phys. 2021; 22: 93-104https://doi.org/10.1002/acm2.13327
- Synthetic computed tomography generation from 0.35T magnetic resonance images for magnetic resonance-only radiation therapy planning using perceptual loss models.Pract Radiat Oncol. 2022; 12: e40-e48https://doi.org/10.1016/j.prro.2021.08.007
- A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases.Radiother Oncol. 2022; https://doi.org/10.1016/j.radonc.2022.08.028
Kang SK, An HJ, Jin H, Kim J in, Chie EK, Park JM, et al. Synthetic CT generation from weakly paired MR images using cycle-consistent GAN for MR-guided radiotherapy. Biomed Eng Lett 2021;11:263–71. 10.1007/s13534-021-00195-8.
- Characterization of radiotherapy component impact on MR imaging quality for an MRgRT system.J Appl Clin Med Phys. 2020; 21: 20-26https://doi.org/10.1002/acm2.13054
- Head and neck radiotherapy on the MR linac: a multicenter planning challenge amongst MRIdian platform users.Strahlenther Onkol. 2021; 197: 1093-1103https://doi.org/10.1007/s00066-021-01771-8
- Dosimetric effects of air cavities for MRI-guided online adaptive radiation therapy (MRgART) of prostate bed after radical prostatectomy.J Clin Med. 2022; 11: 364https://doi.org/10.3390/jcm11020364
- New variants of a method of MRI scale standardization.IEEE Trans Med Imaging. 2000; 19: 143-150https://doi.org/10.1109/42.836373
Reinhold JC, Dewey BE, Carass A, Prince JL. Evaluating the impact of intensity normalization on MR image synthesis. Proc SPIE – Int Soc Opt Eng 2019;10949:109493H. https://doi.org/10.1117/12.2513089.
Zhu J-Y, Park T, Wang T. CycleGAN and pix2pix: Image-to-Image Translation in PyTorch n.d. https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix (accessed October 1, 2021).
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017.
3. Special Considerations Regarding Absorbed-Dose and Dose–Volume Prescribing and Reporting in IMRT. J ICRU 2010;10:27–40. 10.1093/jicru/ndq008.
- Deep convolution neural network (DCNN) multiplane approach to synthetic CT generation from MR images—application in brain proton therapy.Int J Radiat Oncol Biol Phys. 2019; 105: 495-503https://doi.org/10.1016/j.ijrobp.2019.06.2535
- Patient positioning and immobilization procedures for hybrid MR-Linac systems.Radiat Oncol. 2021; 16: 183https://doi.org/10.1186/s13014-021-01910-6
- MR-guided proton therapy: a review and a preview.Radiat Oncol. 2020; 15: 129https://doi.org/10.1186/s13014-020-01571-x
- Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system.J Appl Clin Med Phys. 2020; 21: 144-152https://doi.org/10.1002/acm2.12903
- Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics.Sci Rep. 2020; 10: 12340https://doi.org/10.1038/s41598-020-69298-z
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy