Highlights
- •Textural features on daily images outperformed dose/volume parameters.
- •The best models could be used before or at mid-treatment for personalisation.
- •Area under the curve of the best models at 6, 12 and 24 months was 0.69, 0.74 and 0.86.
Abstract
Background and purpose
Materials and Methods
Results
Conclusion
Keywords
1. Introduction
- Masterson L.
- Moualed D.
- Masood A.
- Dwivedi R.C.
- Benson R.
- Sterling J.C.
- et al.
Steenbakkers RJHM, van Rijn – Dekker MI, Stokman MA, Kierkels RGJ, van der Schaaf A, van den Hoek JGM, et al. Parotid gland stem cell sparing radiotherapy for head and neck cancer patients: a double-blind randomized controlled trial. Int J Radiat Oncol 2021; 112(2):306-16 https://doi.org/10.1016/J.IJROBP.2021.09.023.
2. Material and methods
2.1 Study design, patient cohort and endpoints.
6 months | 12 months | 24 months | ||
---|---|---|---|---|
Number of patients | 112 | 95 | 57 | |
Moderate-to-severe xerostomia | 51 (46 %) | 31 (33 %) | 15 (26 %) | |
Contra-lateral parotid mean dose median [Q1 – Q3] (Gy) | 29.8 [17.6–35.6] | 29.6 [16.1–35.8] | 25.1 [10.0–32.1] | |
Age median [Q1 – Q3] (years) | 58.5 [52–64.5] | 59 [53–65] | 58 [51–64.25] | |
Disease primary site | oropharynx | 79 | 65 | 32 |
Unknown primary | 6 | 6 | 4 | |
oral cavity | 9 | 8 | 8 | |
unspecified | 9 | 8 | 5 | |
larynx | 5 | 4 | 4 | |
maxilla | 4 | 4 | 4 | |
Dose prescription | 60 Gy | 22 | 20 | 18 |
65 Gy | 87 | 72 | 38 | |
70 Gy | 3 | 3 | 1 | |
Chemotherapy | None | 34 | 28 | 23 |
cetuximab | 11 | 9 | 4 | |
cisplatin | 67 | 58 | 30 | |
tumour stageTNM (AJCC) 7 | T0-2 | 77 | 64 | 40 |
T3-4 | 35 | 31 | 17 | |
nodal statusTNM (AJCC) 7 | N0-1 | 41 | 34 | 20 |
N2-3 | 71 | 61 | 37 |
2.2 Treatment details, image analysis and feature extraction
2.3 Data analysis and outcome modelling

- 1/Radiomics-based predictors.
- 2/Radiomics-based predictors with mean dose.
models | fraction adaptation | AUC train [CI] | AUC test [CI] | |
---|---|---|---|---|
6 m | Mean Dose + information correlation 1 GLCM 2D fx1_5 | 5 | 0.70[0.70–0.71] | 0.69[0.65–0.71] |
information correlation 1 GLCM 2D fx1_5 | 5 | 0.67[0.66–0.67] | 0.67[0.65–0.68] | |
Mean Dose | 0 | 0.64[0.64–0.65] | 0.64[0.63–0.66] | |
12 m | Mean Dose + Q1-Q3 range HU 3D fx1_10 + min hist grad int HU 3D fx1_10 | 10 | 0.76[0.75–0.77] | 0.73[0.69–0.76] |
Q1-Q3 range HU 3D fx1_10 + min hist grad int HU 3D fx1_10 | 10 | 0.76[0.75–0.76] | 0.74[0.71–0.76] | |
Mean Dose | 0 | 0.61[0.61–0.62] | 0.61[0.59–0.63] | |
24 m | Mean Dose + Normalised Grey Level Non Uniformity GLRLM 2D fx1_15 | 15 | 0.85[0.84–0.86] | 0.82[0.75–0.86] |
Normalised Grey Level Non Uniformity GLRLM 2D fx1_15 | 15 | 0.86[0.85–0.86] | 0.86[0.83–0.88] | |
Mean Dose | 0 | 0.59[0.58–0.60] | 0.59[0.54–0.61] |
3. Results

4. Discussion
Declaration of Competing Interest
Acknowledgements
Appendix A. Supplementary data
- Supplementary data 1
References
- Long-term late toxicity, quality of life, and emotional distress in patients with nasopharyngeal carcinoma treated with intensity modulated radiation therapy.Int J Radiat Oncol Biol Phys. 2018; 102: 340-352https://doi.org/10.1016/j.ijrobp.2018.05.060
- Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program.Int J Radiat Oncol Biol Phys. 2009; 74: 1-8https://doi.org/10.1016/j.ijrobp.2008.07.059
- Patients with head and neck cancer cured by radiation therapy: A survey of the dry mouth syndrome in long-term survivors.Head Neck. 2002; 24: 737-747https://doi.org/10.1002/hed.10129
- Xerostomia, salivary characteristics and gland volumes following intensity-modulated radiotherapy for nasopharyngeal carcinoma: a two-year follow-up.Aust Dent J. 2018; 63: 217-223https://doi.org/10.1111/adj.12608
- Long-term quality of life after swallowing and salivary-sparing chemo-intensity modulated radiation therapy in survivors of human papillomavirus-related oropharyngeal cancer.Int J Radiat Oncol Biol Phys. 2015; 91: 925-933https://doi.org/10.1016/j.ijrobp.2014.12.045
- Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial.Lancet. 2019; 393: 51-60https://doi.org/10.1016/S0140-6736(18)32752-1
- Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial.Lancet. 2019; 393: 40-50https://doi.org/10.1016/S0140-6736(18)32779-X
- De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma.Cochrane Database Syst Rev. 2014; 2014https://doi.org/10.1002/14651858.CD010271.pub2
Steenbakkers RJHM, van Rijn – Dekker MI, Stokman MA, Kierkels RGJ, van der Schaaf A, van den Hoek JGM, et al. Parotid gland stem cell sparing radiotherapy for head and neck cancer patients: a double-blind randomized controlled trial. Int J Radiat Oncol 2021; 112(2):306-16 https://doi.org/10.1016/J.IJROBP.2021.09.023.
- 50 years of radiotherapy research: Evolution, trends and lessons for the future.Radiother Oncol. 2021; 165: 75-86https://doi.org/10.1016/j.radonc.2021.09.026
- Dosimetric evaluation of incorporating patient geometric variations into adaptive plan optimization through probabilistic treatment planning in head and neck cancers.Int J Radiat Oncol Biol Phys. 2018; 101: 985-997https://doi.org/10.1016/j.ijrobp.2018.03.062
- Radiotherapy for head and neck tumours in 2012 and beyond: Conformal, tailored, and adaptive?.Lancet Oncol. 2012; 13: e292
- Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help?.Radiother Oncol. 2015; 115: 285-294https://doi.org/10.1016/j.radonc.2015.05.018
- Radiomics: The bridge between medical imaging and personalized medicine.Nat Rev Clin Oncol. 2017; 14: 749-762https://doi.org/10.1038/nrclinonc.2017.141
- Imaging science and development in modern high-precision radiotherapy.Phys Imaging Radiat Oncol. 2019; 12: 63-66https://doi.org/10.1016/J.PHRO.2019.11.008
- Radiomics predicts clinical outcome in primary gastroesophageal junction adenocarcinoma treated by chemo/radiotherapy and surgery.Phys Imaging Radiat Oncol. 2017; 3: 37-42https://doi.org/10.1016/j.phro.2017.07.006
- A positron emission tomography radiomic signature for distant metastases risk in oropharyngeal cancer patients treated with definitive chemoradiotherapy.Phys Imaging Radiat Oncol. 2022; 21: 72-77https://doi.org/10.1016/j.phro.2022.02.005
- Biochemical recurrence prediction after radiotherapy for prostate cancer with T2w magnetic resonance imaging radiomic features.Phys Imaging Radiat Oncol. 2018; 7: 9-15https://doi.org/10.1016/J.PHRO.2018.06.005
- Parotid gland fat related Magnetic Resonance image biomarkers improve prediction of late radiation-induced xerostomia.Radiother Oncol. 2018; 128: 459-466https://doi.org/10.1016/j.radonc.2018.06.012
- 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia.Radiother Oncol. 2018; 126: 89-95https://doi.org/10.1016/j.radonc.2017.08.024
- CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva.Radiother Oncol. 2017; 122: 185-191https://doi.org/10.1016/j.radonc.2016.07.007
- A deep learning model for predicting xerostomia due to radiation therapy for head and neck squamous cell carcinoma in the RTOG 0522 clinical trial.Int J Radiat Oncol Biol Phys. 2019; 105: 440-447https://doi.org/10.1016/j.ijrobp.2019.06.009
- The needs and benefits of continuous model updates on the accuracy of rt-induced toxicity prediction models within a learning health system.Int J Radiat Oncol Biol Phys. 2019; 103: 460-467https://doi.org/10.1016/j.ijrobp.2018.09.038
- Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images.Quant Imaging Med Surg. 2019; 9: 1288-1302
- Delta-radiomics features during radiotherapy improve the prediction of late xerostomia.Sci Rep. 2019; 9: e12483
- Geometric image biomarker changes of the parotid gland are associated with late Xerostomia.Int J Radiat Oncol Biol Phys. 2017; 99: 1101-1110https://doi.org/10.1016/j.ijrobp.2017.08.003
Ghadjar P, Fiorino C, Munck af Rosenschöld P, Pinkawa M, Zilli T, van der Heide UA. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother Oncol 2019;141:5–13. https://doi.org/10.1016/j.radonc.2019.08.027.
- Image Guided Radiation Therapy (IGRT) practice patterns and IGRT’s impact on workflow and treatment planning: Results from a national survey of american society for radiation oncology members.Int J Radiat Oncol Biol Phys. 2016; 94: 850-857https://doi.org/10.1016/j.ijrobp.2015.09.035
- Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.Radiother Oncol. 2017; 123: 363-369https://doi.org/10.1016/j.radonc.2017.04.016
- Early changes in serial CBCT-measured parotid gland biomarkers predict chronic xerostomia after head and neck radiation therapy.Int J Radiat Oncol Biol Phys. 2018; 102: 1319-1329https://doi.org/10.1016/j.ijrobp.2018.06.048
- Practical aspects of implementation of helical tomotherapy for intensity-modulated and image-guided radiotherapy.Clin Oncol. 2010; 22: 294-312https://doi.org/10.1016/j.clon.2010.02.003
- Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: The multidisciplinary ‘VoxTox’ research programme.Cern IdeaSquare J Exp Innov. 2017; 1: 3-12
- Anatomical change during radiotherapy for head and neck cancer, and its effect on delivered dose to the spinal cord.Radiother Oncol. 2019; 130: 32-38https://doi.org/10.1016/j.radonc.2018.07.009
- Recalculation of dose for each fraction of treatment on TomoTherapy.Br J Radiol. 2016; 89: e1059
- NIMRAD - A phase III trial to investigate the use of nimorazole hypoxia modification with intensity-modulated radiotherapy in head and neck cancer.Clin Oncol. 2014; 26: 344-347https://doi.org/10.1016/j.clon.2014.03.003
Grégoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014;110:172–81. https://doi.org/10.1016/j.radonc.2013.10.010.
- CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines.Radiother Oncol. 2015; 117: 83-90https://doi.org/10.1016/j.radonc.2015.07.041
- Elastix: A toolbox for intensity-based medical image registration.IEEE Trans Med Imaging. 2010; 29: 196-205https://doi.org/10.1109/TMI.2009.2035616
- Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy.Phys Med Biol. 2017; 62: 6062-6073https://doi.org/10.1088/1361-6560/aa76aa
- Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling.Phys Imaging Radiat Oncol. 2019; 10: 49-54https://doi.org/10.1016/J.PHRO.2019.05.001
- Automated detection of dental artifacts for large-scale radiomic analysis in radiation oncology.Phys Imaging Radiat Oncol. 2021; 18: 41-47https://doi.org/10.1016/J.PHRO.2021.04.001
- The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping.Radiology. 2020; 295: 328-338https://doi.org/10.1148/radiol.2020191145
Zwanenburg A, Leger S, Vallières M, Löck S. The image biomarker standardisation initiative — IBSI 0.0.1dev documentation 2019. https://ibsi.readthedocs.io/en/latest/#%0Ahttps://ibsi.readthedocs.io/en/latest/ (accessed August 31, 2021).
- NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: the role of dosimetric and clinical factors.Radiother Oncol. 2012; 105: 101-106https://doi.org/10.1016/J.RADONC.2012.03.004
- Does radiation dose to the salivary glands and oral cavity predict patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with curative radiotherapy?.Radiother Oncol. 2005; 77: 164-171https://doi.org/10.1016/J.RADONC.2005.10.002
- Comprehensive toxicity risk profiling in radiation therapy for head and neck cancer: A new concept for individually optimised treatment.Radiother Oncol. 2021; 157: 147-154https://doi.org/10.1016/j.radonc.2021.01.024
- Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration.Ann Intern Med. 2015; 162: W1-Whttps://doi.org/10.7326/M14-0698
- The feasibility study of megavoltage computed tomographic (MVCT) image for texture feature analysis.Front Oncol. 2018; 8: e586
- Impact of head and neck cancer adaptive radiotherapy to spare the parotid glands and decrease the risk of xerostomia.Radiat Oncol. 2015; 10: e6
- Adaptive radiotherapy for head and neck cancer.Acta Oncol. 2018; 57: 1284-1292https://doi.org/10.1080/0284186X.2018.1505053
- Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: Is the gain in dose distribution worth the effort?.Radiother Oncol. 2011; 101: 343-350https://doi.org/10.1016/j.radonc.2011.06.011
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy