Highlights
- •Vascular permeability is associated with diffusability in nasopharyngeal tumour.
- •Both influx and reflux rates have inverse linear correlations with ADC.
- •Reflux rate has the strongest inverse linear correlation with ADC.
Abstract
Background and Purpose
Material and Methods
Results
Conclusions
Keywords
1. Introduction
- Descoteaux M.
- Poupon C.
- Descoteaux M.
- Poupon C.
- Zhang G.Y.
- Wang Y.J.
- Liu J.P.
- Zhou X.H.
- Xu Z.F.
- Chen X.P.
- et al.
2. Materials and Methods
2.1 Patients
Patient Characteristics | No. of Patient | % | |
---|---|---|---|
Age | |||
Range 26–66 | |||
Median 47 | |||
Sex | |||
Male | 16 | 80 | |
Female | 4 | 20 | |
Pathologic T classification | |||
T1 | 7 | 35 | |
T2 | 3 | 15 | |
T3 | 6 | 30 | |
T4 | 4 | 20 | |
Stage | |||
II | 4 | 20 | |
III | 10 | 50 | |
IV | 6 | 30 |
2.2 MR imaging
2.2.1 DW-MRI
2.2.2 DCE-MRI
Parameter | DW-MRI | DCE-MRI |
---|---|---|
Slice orientation | Transversal | Transversal |
TR (ms) | 3890 | 6.28 |
TE (ms) | 51/78 | 2.38 |
b values (s/mm2) | 50(2), 800(4) | |
Voxel size (mm3) | 2 × 2 × 3.5 | 1.4 × 1.4 × 3.5 |
Field of view (mm2) | 220 × 220 | 260 × 260 |
Matrix | 112 × 112 | 192 × 154 |
Slice thickness (mm) | 3.5 | 3.5 |
Slice gap (mm) | 0.35 | |
No. of slices | 20 | 30 |
Fat suppression | SPAIR | CHESS |
Readout segments | 7 shots | |
Readout partial Fourier acquisition | 5/8 | |
GRAPPA acceleration factor | 2 | |
Flip angle | 180° | 9° |
Acquisition time (min:s) | 6:27 | 4:42 |
2.3 Post-processing
- Tofts P.S.
- Brix G.
- Buckley D.L.
- Evelhoch J.L.
- Henderson E.
- Knopp M.V.
- et al.
3. Results



4. Discussions
- Meyer H.-J.
- Hamerla G.
- Leifels L.
- Höhn A.K.
- Surov A.
- Kooreman E.S.
- van Houdt P.J.
- Keesman R.
- van Pelt V.W.J.
- Nowee M.E.
- Pos F.
- et al.
Declaration of Competing Interest
References
- Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities.Radiother Oncol. 2014; 110: 398-403https://doi.org/10.1016/j.radonc.2013.10.020
- A randomized phase III study between sequential versus simultaneous integrated boost intensity-modulated radiation therapy in nasopharyngeal carcinoma.Strahlenther Onkol. 2018; 194: 375-385https://doi.org/10.1007/s00066-017-1251-5
- Treatment results for nasopharyngeal carcinoma in the modern era: The Hong Kong experience.Int J Radiat Oncol Biol Phys. 2005; 61: 1107-1116https://doi.org/10.1016/j.ijrobp.2004.07.702
- Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis.Lancet Oncol. 2015; 16: 645-655https://doi.org/10.1016/S1470-2045(15)70126-9
- Anti-angiogenesis: new concept for therapy of solid tumors.Ann Surg. 1972; 175: 409-416
- VEGF receptor signaling in tumor angiogenesis.Oncologist. 2000; 5: 3-10https://doi.org/10.1634/theoncologist.5-suppl_1-3
- Tumour angiogenesis.Ann R Coll Surg Engl. 1985; 67: 295-298
- Microvessel density in head and neck squamous cell carcinoma primary tumors and its correlation with clinical staging parameters.Laryngoscope. 2006; 116: 397-400https://doi.org/10.1097/01.MLG.0000195286.29613.E1
- Hypoxia inducible factor-1α and vascular endothelial growth factor expression are associated with a poor prognosis in patients with nasopharyngeal carcinoma receiving radiotherapy with carbogen and nicotinamide.Clin Oncol. 2008; 20: 606-612https://doi.org/10.1016/j.clon.2008.07.001
- Predicting outcome of advanced head-and-neck cancer by measuring tumor blood perfusion in patients receiving neoadjuvant chemotherapy.J Cancer Res Ther. 2020; 16: S34-S38https://doi.org/10.4103/jcrt.JCRT_195_18
- Tumor plasma flow determined by dynamic contrast-enhanced MRI predicts response to induction chemotherapy in head and neck cancer.Oral Oncol. 2015; 51: 508-513https://doi.org/10.1016/j.oraloncology.2015.01.013
- Value of dynamic contrast-enhanced magnetic resonance imaging for determining the plasma Epstein-Barr virus status and staging of nasopharyngeal carcinoma.Clin Imaging. 2021; 72: 1-7https://doi.org/10.1016/j.clinimag.2020.10.047
- Contrast-enhanced dynamic and diffusion-weighted magnetic resonance imaging at 3.0 T to assess early-stage nasopharyngeal carcinoma.Oncol Lett. 2018; 15: 5294-5300https://doi.org/10.3892/ol.2018.7948
- Diffusion-weighted MRI.in: Belkić D. Belkić K. Comprehensive biomedical physics: magnetic resonance imaging and spectroscopy. Elsevier B.V, Stockholm2014: 81-97https://doi.org/10.1016/b978-0-444-53632-7.00306-3
- Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck.Clin Cancer Res. 2009; 15: 986-994https://doi.org/10.1158/1078-0432.CCR-08-1287
Surov A, Meyer HJ, Winter K, Richter C, Hoehn A-K. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma. Oncotarget 2018;9:23599-607. 10.18632/oncotarget.25284.
- Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases.Sci Rep. 2015; 5: 12242https://doi.org/10.1038/srep12242
- The prognostic value of pretreatment tumor apparent diffusion coefficient values in nasopharyngeal carcinoma.BMC Cancer. 2017; 17: 678https://doi.org/10.1186/s12885-017-3658-x
- Early responses assessment of neoadjuvant chemotherapy in nasopharyngeal carcinoma by serial dynamic contrast-enhanced MR imaging.Magn Reson Imaging. 2017; 35: 125-131https://doi.org/10.1016/j.mri.2016.08.011
- Pretreatment diffusion-weighted MRI can predict the response to neoadjuvant chemotherapy in patients with nasopharyngeal carcinoma.Biomed Res Int. 2015; 2015307943https://doi.org/10.1155/2015/307943
Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. Eighth edition. ed. Chichester, West Sussex, UK, Hoboken, NJ: John Wiley & Sons, Inc.; 2017.
- Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck.Quant Imaging Med Surg. 2012; 2: 245-253https://doi.org/10.3978/j.issn.2223-4292.2012.11.04
- Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.J Magn Reson Imaging. 1999; 10: 223-232https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
- Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.J Magn Reson Imaging. 1997; 7: 91-101https://doi.org/10.1002/jmri.1880070113
- Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions.Eur Radiol. 2016; 26: 1991-1998https://doi.org/10.1007/s00330-015-4012-9
- Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI.Phys Med Biol. 2008; 53: 1225-1239https://doi.org/10.1088/0031-9155/53/5/005
- Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI.Magn Reson Med. 2006; 56: 993-1000https://doi.org/10.1002/mrm.21066
- Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers.Physiol Chem Phys Med NMR. 1984; 16: 167-172
- Targeting tumor hypoxia in nasopharyngeal carcinoma.Head Neck. 2013; 35: 133-145https://doi.org/10.1002/hed.21877
- Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival.Clin Cancer Res. 2002; 8: 2595-2604
Walsh JJ, Parent M, Akif A, Adam LC, Maritim S, Mishra SK, et al. Imaging hallmarks of the tumor microenvironment in glioblastoma progression. Front Oncol 2021;11:692650. 10.3389/fonc.2021.692650.
- Histogram analysis parameters derived from DCE-MRI in head and neck squamous cell cancer – Associations with microvessel density.Eur J Radiol. 2019; 120108669https://doi.org/10.1016/j.ejrad.2019.108669
- Pilot study on evaluation of any correlation between MR perfusion (Ktrans) and diffusion (apparent diffusion coefficient) parameters in brain tumors at 3 Tesla.Cancer Imaging. 2012; 12: 1-6https://doi.org/10.1102/1470-7330.2012.0001
- Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations.Magn Reson Med. 2013; 69: 553-562https://doi.org/10.1002/mrm.24277
- Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques.Magn Reson Imaging. 2013; 31: 1567-1577https://doi.org/10.1016/j.mri.2013.06.010
Chu J-P, Mak HK-F, Yau KK-W, Zhang L, Tsang J, Chan Q, et al. Pilot study on evaluation of any correlation between MR perfusion (K trans) and diffusion (apparent diffusion coefficient) parameters in brain tumors at 3 Tesla. Cancer Imaging 2012;12:1-6. 10.1102/1470-7330.2012.0001.
- Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors.J Magn Reson Imaging. 2018; 48: 1358-1366https://doi.org/10.1002/jmri.26059
- Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results.Magn Reson Imaging. 2007; 25: 1-13https://doi.org/10.1016/j.mri.2006.09.006
- Diffusion weighted MR imaging of the breast.Acad Radiol. 2010; 17: 382-386https://doi.org/10.1016/j.acra.2009.10.014
- Dynamic contrast-enhanced MR perfusion imaging of head and neck tumors at 3 Tesla.Head Neck. 2013; 35: 923-929https://doi.org/10.1002/hed.23051
- Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy.Breast Cancer Res Treat. 2005; 91: 1-10https://doi.org/10.1007/s10549-004-5819-2
- Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring.Mol Cancer Ther. 2003; 2: 419-426
- Combination of diffusion-weighted imaging and arterial spin labeling at 3.0 T for the clinical staging of nasopharyngeal carcinoma.Clin Imaging. 2020; 66: 127-132https://doi.org/10.1016/j.clinimag.2020.05.007
- Daily intravoxel incoherent motion (IVIM) in prostate cancer patients during MR-guided radiotherapy-A multicenter study.Front Oncol. 2021; 11705964https://doi.org/10.3389/fonc.2021.705964
- Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer.Phys Imaging Radiat Oncol. 2021; 18: 26-33https://doi.org/10.1016/j.phro.2021.03.003
- Repeatability of radiotherapy dose-painting prescriptions derived from a multiparametric magnetic resonance imaging model of glioblastoma infiltration.Phys Imaging Radiat Oncol. 2022; 23: 8-15https://doi.org/10.1016/j.phro.2022.06.004
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy