Highlights
- •Online adaptive radiotherapy is feasible on a robotic radiosurgery system.
- •Plan templates for fast plan re-optimization were developed and successfully tested.
- •Dummy runs were performed for two abdominal treatment sites.
- •Total treatment times were 64 and 83 min respectively.
Abstract
Background and purpose
Materials and methods
Results
Conclusions
Keywords
1. Introduction
- Placidi L.
- Romano A.
- Chiloiro G.
- Cusumano D.
- Boldrini L.
- Cellini F.
- et al.
- Hassanzadeh C.
- Rudra S.
- Bommireddy A.
- Hawkins W.G.
- Wang-Gillam A.
- Fields R.C.
- et al.
2. Material and Methods
2.1 Patient characteristics
2.2 Offline planning CT delineation and plan generation

2.3 Offline quick plan evaluation
2.4 Dummy runs
2.5 Online ART procedure
3. Results
Clinical unrestricted plan | Quick plan | |||
---|---|---|---|---|
Offline Optimization Time planCT (min:s), lymph nodes|LAPC | 5:10 (1:48–15.06) | 14:45 (5:14–30:20) | 2:34 (1:14–5:37) | 4:22 (3:28–5:09) |
Online Optimization Time FxCT (min:s), lymph nodes|LAPC | 2:42 (1:21–5:39) | 3:28 (2:28–4:11) | ||
FxCT plans within all dose constraints, lymph nodes|LAPC | 4/4 | 4/4 | 18/18 | 12/12 |
PTV coverage (%) | 93.0 | 92.8 | ||
GTV coverage (%) | 98.3 | 98.6 | ||
PTV CI | 1.09 | 1.09 | ||
PTV mean (Gy) | 45.6 | 45.5 | ||
GTV mean (Gy) | 47.1 | 47.1 | ||
Mean dose OARs (Gy) | 6.1 | 6.3 | ||
OARs D0.5 cm3 (Gy) | 30.2 | 29.7 |
4. Discussion
- Lamb J.
- Cao M.
- Kishan A.
- Agazaryan N.
- Thomas D.H.
- Shaverdian N.
- et al.
- Placidi L.
- Romano A.
- Chiloiro G.
- Cusumano D.
- Boldrini L.
- Cellini F.
- et al.
- Lamb J.
- Cao M.
- Kishan A.
- Agazaryan N.
- Thomas D.H.
- Shaverdian N.
- et al.
de Muinck Keizer DM, van der Voort van Zyp JRN, de Groot-van Breugel EN, Raaymakers BW, Lagendijk JJW, de Boer HCJ. On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy. Phys Imaging Radiat Oncol 2021;19:90–5. 10.1016/j.phro.2021.07.010.
- Byrne M.
- Archibald-Heeren B.
- Hu Y.
- Teh A.
- Beserminji R.
- Cai E.
- et al.
Declaration of Competing Interest
Appendix A. Supplementary data
- Supplementary data 1
References
- Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated.Int J Radiat Oncol Biol Phys. 2013; 86: 516-522https://doi.org/10.1016/j.ijrobp.2013.02.022
- Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma.Acta Oncol. 2015; 54: 979-985https://doi.org/10.3109/0284186X.2015.1004367
- Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study.Strahlentherapie Und Onkol. 2019; 195: 1113-1115https://doi.org/10.1007/s00066-019-01528-4
- Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial.Lancet. 2019; 393: 2051-2058https://doi.org/10.1016/S0140-6736(18)32487-5
- Dosimetric benefits and practical pitfalls of daily online adaptive MRI-guided stereotactic radiation therapy for pancreatic cancer.Pract Radiat Oncol. 2019; 9: e46-e54https://doi.org/10.1016/j.prro.2018.08.010
- Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen.Radiother Oncol. 2018; 126: 519-526https://doi.org/10.1016/j.radonc.2017.11.032
- Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy.Int J Radiat Oncol Biol Phys. 2012; 83: 423-429https://doi.org/10.1016/j.ijrobp.2011.12.073
- Comparison of Daily Online Plan Adaptation Strategies for a Cohort of Pancreatic Cancer Patients Treated with SBRT: plan adaptation strategies for pancreatic SBRT.Int J Radiat Oncol Biol Phys. 2021; 111: 208-219https://doi.org/10.1016/j.ijrobp.2021.03.050
- Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer.Radiat Oncol. 2018; 13: 1-8https://doi.org/10.1186/s13014-018-1000-7
- On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: Clinical and dosimetric considerations.Tech Innov Patient Support Radiat Oncol. 2020; 15: 15-21https://doi.org/10.1016/j.tipsro.2020.06.001
- Online adaptive radiation therapy.Int J Radiat Oncol Biol Phys. 2017; 99: 994-1003https://doi.org/10.1016/j.ijrobp.2017.04.023
- Adaptive Radiation Therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology.Int J Radiat Oncol Biol Phys. 2021; 109: 1054-1075https://doi.org/10.1016/j.ijrobp.2020.10.021
- Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation.Adv Radiat Oncol. 2021; 6100506https://doi.org/10.1016/j.adro.2020.06.010
van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, Slotman BJ, Senan S, Lagerwaard FJ. MR-guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A Geometric Analysis. Int J Radiat Oncol Biol Phys 2018;102:858–66. 10.1016/j.ijrobp.2018.05.048.
- Intrafraction pancreatic tumor motion patterns during ungated magnetic resonance guided radiotherapy with an abdominal corset.Phys Imaging Radiat Oncol. 2022; 21: 1-5https://doi.org/10.1016/j.phro.2021.12.001
- MRI evaluation of normal tissue deformation and breathing motion under an abdominal compression device.J Appl Clin Med Phys. 2021; 22: 90-97https://doi.org/10.1002/acm2.13165
- 4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: Implementation and initial clinical experience.Clin Transl Radiat Oncol. 2020; 23: 72-79https://doi.org/10.1016/j.ctro.2020.05.002
- Feasibility of ablative stereotactic body radiation therapy of pancreas cancer patients on a 1.5 Tesla magnetic resonance-linac system using abdominal compression. Phys Imaging.Radiat Oncol. 2021; 19: 53-59https://doi.org/10.1016/j.phro.2021.07.006
- CyberKnife with integrated CT-on-rails: System description and first clinical application for pancreas SBRT.Med Phys. 2017; 44: 4816-4827https://doi.org/10.1002/mp.12432
- The CyberKnife® robotic radiosurgery system in 2010.Technol Cancer Res Treat. 2010; 9: 433-452https://doi.org/10.1177/153303461000900502
- Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk.Radiother Oncol. 2019; 134: 67-73https://doi.org/10.1016/j.radonc.2019.01.020
- Largely reduced OAR doses, and planning and delivery times for challenging robotic SBRT cases, obtained with a novel optimizer.J Appl Clin Med Phys. 2021; : 1-13https://doi.org/10.1002/acm2.13172
- Performance assessment of a new optimization system for robotic SBRT MLC-based plans.Phys Med. 2020; 71: 31-38https://doi.org/10.1016/j.ejmp.2020.02.009
- Clinical impact of the VOLO optimizer on treatment plan quality and clinical treatment efficiency for CyberKnife.J Appl Clin Med Phys. 2020; 21: 38-47https://doi.org/10.1002/acm2.12851
- Novel inverse planning optimization algorithm for robotic radiosurgery: First clinical implementation and dosimetric evaluation.Phys Med. 2019; 64: 230-237https://doi.org/10.1016/j.ejmp.2019.07.020
- Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.Radiother Oncol. 2017; 125: 439-444https://doi.org/10.1016/j.radonc.2017.07.028
- Commissioning and clinical implementation of the first commercial independent Monte Carlo 3D dose calculation to replace CyberKnife M6TM patient-specific QA measurements.J Appl Clin Med Phys. 2020; 21: 304-311https://doi.org/10.1002/acm2.13046
- Online adaptive radiation therapy: implementation of a new process of care.Cureus. 2017;i.; https://doi.org/10.7759/cureus.1618
- First experience of autonomous, un-supervised treatment planning integrated in adaptive MR-guided radiotherapy and delivered to a patient with prostate cancer.Radiother Oncol. 2021; 159: 197-201https://doi.org/10.1016/j.radonc.2021.03.032
- Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region.Phys Imaging Radiat Oncol. 2021; 17: 1-7https://doi.org/10.1016/j.phro.2020.12.004
- First clinical experiences with a high field 1.5 T MR linac.Acta Oncol. 2019; 58: 1352-1357https://doi.org/10.1080/0284186X.2019.1627417
- First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment.Phys Med Biol. 2017; 62: L41-L50https://doi.org/10.1088/1361-6560/aa9517
- Evaluation of daily online contour adaptation by radiation therapists for prostate cancer treatment on an MRI-guided linear accelerator.Clin Transl Radiat Oncol. 2021; 27: 50-56https://doi.org/10.1016/j.ctro.2021.01.002
- Radiographer-led online image guided adaptive radiotherapy: A qualitative investigation of the therapeutic radiographer role.Radiography. 2021; 27: 1085-1093https://doi.org/10.1016/j.radi.2021.04.012
- Therapeutic Radiographers at the Helm: Moving Towards Radiographer-Led MR-Guided Radiotherapy.JMIRS. 2020; 51: 364-372https://doi.org/10.1016/j.jmir.2020.05.001
- Quantification of organ motion during conformal radiotherapy of the prostate by three-dimensional image registration.Int J Radiat Oncol Biol Phys. 1995; 33: 1311-1320
- Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder.Int J Radiat Oncol Biol Phys. 1991; 20: 1317-1324https://doi.org/10.1016/0360-3016(91)90244-X
- MRI-guided prostate adaptive radiotherapy – A systematic reviewMRI-linac and prostate motion review.Radiother Oncol. 2016; 119: 371-380https://doi.org/10.1016/j.radonc.2016.04.014
de Muinck Keizer DM, van der Voort van Zyp JRN, de Groot-van Breugel EN, Raaymakers BW, Lagendijk JJW, de Boer HCJ. On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy. Phys Imaging Radiat Oncol 2021;19:90–5. 10.1016/j.phro.2021.07.010.
- A new methodology for inter- and intrafraction plan adaptation for the MR-linac.Phys Med Biol. 2015; 60: 7485-7497https://doi.org/10.1088/0031-9155/60/19/7485
- Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.Phys Med Biol. 2017; 62: 7233-7248https://doi.org/10.1088/1361-6560/aa82ae
- Real-time adaptive planning method for radiotherapy treatment delivery for prostate cancer patients, based on a library of plans accounting for possible anatomy configuration changes.PLoS ONE. 2019; 14: 1-19https://doi.org/10.1371/journal.pone.0213002
- Impact of a vacuum cushion on intrafraction motion during online adaptive MR-guided SBRT for pelvic and para-aortic lymph node oligometastases.Radiother Oncol. 2021; 154: 110-117https://doi.org/10.1016/j.radonc.2020.09.021
- Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time.J Appl Clin Med Phys. 2022; 23https://doi.org/10.1002/acm2.13479
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy