Highlights
- •Dice score and Hausdorff distance do not correlate with dose-volume-based results.
- •Auto-contours close to the tumor or in entry/exit beams should be checked.
- •Heart and esophagus must be checked for locally advanced non-small cell lung cancer.
- •Bronchi must be checked for peripheral early-stage non-small cell lung cancer.
- •Every treatment plan still passed the clinical goals for the manual organs at risk.
Abstract
Background and purpose
Material and methods
Results
Conclusions
Keywords
1. Introduction
- Postmus P.E.
- Kerr K.M.
- Oudkerk M.
- Senan S.
- Waller D.A.
- Vansteenkiste J.
- et al.
2. Material and methods
2.1 Patient data
2.2 Convolutional neural network
Trullo R, Petitjean C, Nie D, Shen D, Ruan S. Joint segmentation of multiple thoracic organs in CT images with two collaborative deep architectures. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science, vol. 10553. Cham: Springer; 2017 Sep 9. p. 21–9. doi: 10.1007/978-3-319-67558-9_3.
- Mongan J.
- Moi L.
- Kahn C.
2.3 Dose-volume-based evaluation
OAR | Dose-volume statistic | Early-stage | Locally advanced | ||
---|---|---|---|---|---|
P-value | Pearson | P-value | Pearson | ||
Lungs | Dmean | 0.001* | 0.999 | 0.509 | 0.999 |
V20 | 0.019* | 0.998 | 0.944 | 0.999 | |
V5 | 0.254 | 0.998 | 0.529 | 1.000 | |
Heart | Dmean | 0.865 | 0.977 | 0.529 | 0.969 |
D2 | 0.689 | 0.966 | 0.503 | 0.913 | |
Esophagus | Dmean | 0.889 | 0.775 | 0.682 | 0.986 |
D2 | 0.313 | 0.994 | 0.857 | 0.990 | |
Main left bronchus | D2 | 0.749 | 0.987 | 0.453 | 0.995 |
Main right bronchus | D2 | 0.575 | 0.932 | 0.412 | 0.998 |
Spinal cord | D2 | 0.267 | 0.998 | 0.857 | 0.999 |
Trachea | D2 | 1.000 | 0.998 | 0.944 | 0.990 |
3. Results
OAR | Volume of the manual delineation (mean ± 1 SD) [cm3] | Volume of the automatic delineation (mean ± 1 SD) [cm3] | Average DSC ± 1 SD | Average DSC from previous studies on auto-segmentation | Average DSC from previous studies on inter-observer variability |
---|---|---|---|---|---|
Lungs | 3780 ± 1004 | 3708 ± 1000 | 0.98 ± 0.01 | 0.97 [40] | 0.97 [26] |
0.95 [39] | [0.98,0.97] [38] | ||||
0.99 [43] | 0.95 [39] | ||||
0.97 [16] | 0.98 [44] | ||||
Trachea | 36 ± 13 | 36 ± 12 | 0.84 ± 0.06 | 0.93 [23] | 0.97 [26] |
0.91 [42] van Harten LD, Noothout JMH, Verhoeff JJC, Wolterink JM, Išgum I. Automatic segmentation of organs at risk in thoracic CT scans by combining 2D and 3D convolutional neural networks. In Petitjean C, Ruan S, Lamber Z, Dubray B, editors, SegTHOR 2019: Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images (SegTHOR2019). CEUR. 2019. (CEUR workshop proceedings). http://ceur-ws.org/Vol-2349/SegTHOR2019_paper_12.pdf. | |||||
Esophagus | 46 ± 40 | 31 ± 9 | 0.72 ± 0.15 | 0.73 [40] | 0.64 [26] |
0.86 [23] | [0.77,0.76] [38] | ||||
0.64 [39] | 0.83 [39] | ||||
0.82 [43] | |||||
0.75 [16] | |||||
Heart | 691 ± 150 | 694 ± 142 | 0.91 ± 0.06 | 0.85 [40] | 0.92 [26] |
0.94 [23] | [0.86,0.87] [38] | ||||
[0.87,0.88] [41]
Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012; https://doi.org/10.1186/1748-717X-7-160 | 0.94 [39] | ||||
0.91 [39] | 0.91 [44] | ||||
0.94 [43] | |||||
0.87 [16] | |||||
Spinal cord | 56 ± 11 | 51 ± 9 | 0.80 ± 0.06 | 0.88 [40] | 0.74 [26] |
[0.69,0.81] [41]
Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012; https://doi.org/10.1186/1748-717X-7-160 | [0.70,0.80] [43] | ||||
0.76 [39] | [0.81, 0.76] [38] | ||||
0.90 [16] | 0.80 [39] | ||||
0.81 [44] | |||||
Main left bronchus | 9 ± 4 | 8 ± 4 | 0.75 ± 0.08 | ||
Main right bronchus | 10 ± 4 | 9 ± 3 | 0.78 ± 0.05 |




4. Discussion
- Aliotta E.
- Nourzadeh H.
- Siebers J.
- Bradley J.D.
- Paulus R.
- Komaki R.
- Masters G.
- Blumenschein G.
- Schild S.
- et al.
- Adebahr S.
- Collette S.
- Shash E.
- Lambrecht M.
- Le Pechoux C.
- Faivre-Finn C.
- et al.
Declaration of Competing Interest
Appendix A. Supplementary data
- Supplementary data 1
References
Global cancer observatory: Cancer today [Internet]. International agency for research on Cancer.c2020 - [cited 2021 May 18]. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf.
- Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann Oncol. 2017; https://doi.org/10.1093/annonc/mdx222
- Model-based segmentation of medical imagery by matching distributions.IEEE Trans Med Imaging. 2005; 24: 281-292https://doi.org/10.1109/tmi.2004.841228
- Automated model-based organ delineation for radiotherapy planning in prostatic region.Int J Radiat Oncol Biol Phys. 2004; 60: 973-980https://doi.org/10.1016/j.ijrobp.2004.06.004
- Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases.The Breast. 2017; 32: 44-52https://doi.org/10.1016/j.breast.2016.12.010
- Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context.Radiother Oncol. 2008; 87: 93-99https://doi.org/10.1016/j.radonc.2007.11.030
- Survey on deep learning for radiotherapy.Comput Biol Med. 2018; 98: 126-146https://doi.org/10.1016/j.compbiomed.2018.05.018
- Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.Radiother Oncol. 2018; 126: 312-317https://doi.org/10.1016/j.radonc.2017.11.012
- External validation of deep learning-based contouring of head and neck organs at risk.Phys Imaging Radiat Oncol. 2020; 15: 8-15https://doi.org/10.1016/j.phro.2020.06.006
- The impact of organ-at-risk contour variations on automatically generated treatment plans for NSCLC.Radiother Oncol. 2021; 163: 136-142https://doi.org/10.1016/j.radonc.2021.08.014
- Comparative evaluation of autocontouring in clinical practice: a practical method using the Turing test.Med Phys. 2018; 45: 5105-5115https://doi.org/10.1002/mp.13200
- Fast and accurate deformable contour propagation for intra-fraction adaptive magnetic resonance-guided prostate radiotherapy.Phys Imaging Radiat Oncol. 2022; 21: 62-65https://doi.org/10.1016/j.phro.2022.02.008
- PET-CT–based auto-contouring in non–small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volume.Int J Radiat Oncol Biol Phys. 2007; 68: 771-778https://doi.org/10.1016/j.ijrobp.2006.12
- SU-F-J-113: Multi-atlas based automatic organ segmentation for lung radiotherapy planning.Med Phys. 2016; 43: 3433https://doi.org/10.1118/1.4956021
- Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017.Med Phys. 2018; 45: 4568-4581https://doi.org/10.1002/mp.13141
- Automatic multiorgan segmentation in thorax CT images using U-net-GAN.Med Phys. 2019; 46: 2157-2168https://doi.org/10.1002/mp.13458
de Vos BD, Wolterink JM, de Jong PA, Viergever MA, Išgum I. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. Proceedings SPIE 9784, Med Imaging 2016: Image Processing 2016 Mar 21;97841Y:517–23. doi: 10.1117/12.2216971.
Trullo R, Petitjean C, Nie D, Shen D, Ruan S. Joint segmentation of multiple thoracic organs in CT images with two collaborative deep architectures. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science, vol. 10553. Cham: Springer; 2017 Sep 9. p. 21–9. doi: 10.1007/978-3-319-67558-9_3.
arxiv.org [Internet]. Ronneberger O, Fischer P and Brox T. U-net: Convolutional networks for biomedical image segmentation. ArXiv, c2015 [cited 2021 March 17]. Available from: doi: 10.48550/arXiv.1505.04597.
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 June 20-25, Miami, FL, USA. IEEE 2009 p.248-55. doi: 10.1109/CVPR.2009.5206848.
- Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.Med Phys. 2017; 44: 5221-5233https://doi.org/10.1002/mp.12480
arxiv.org [Internet]. Yakubovskiy P. Segmentation Models. GitHub repository 2019 [cited 2020 February 17]. Available from: https://github.com/qubvel/segmentation_models.
arxiv.org [Internet]. Vesal S, Ravikumar N and Maier A. A 2D dilated residual U-Net for multi-organ segmentation in thoracic CT. ArXiv, c2019 [cited 2021 March 17]. Available from: https://doi.org/10.48550/arXiv.1905.07710.
- Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers.Radiol: Artif Intell. 2020; 2https://doi.org/10.1148/ryai.2020200029
Milletari F, Navab N and Ahmadi S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Proceedings of the 4th Int Conf on 3D Vis (3DV); 2016 Oct 25-26, Stanford, CA, USA. IEEE, 2016 p. 565-71. doi: 10.1109/3DV.2016.79.
- Assessment of contour variability in target volumes and organs at risk in lung cancer radiotherapy.Tech Innov Patient Support Radiat Oncol. 2019; 10: 8-12https://doi.org/10.1016/j.tipsro.2019.05.001
- The HILUS-Trial-a prospective nordic multicenter phase 2 study of ultracentral lung tumors treated with stereotactic body radiotherapy.J Thorac Oncol. 2021; 16: 1200-1210https://doi.org/10.1016/j.jtho.2021.03.019
- Quantifying the dosimetric impact of organ-at-risk delineation variability in head and neck radiation therapy in the context of patient setup uncertainty.Phys Med Biol. 2019; 64135020https://doi.org/10.1088/1361-6560/ab205c
- The impact of peer review of volume delineation in stereotactic body radiation therapy planning for primary lung cancer: a multicenter quality assurance study.J Thorac Oncol. 2014; 9: 527-533https://doi.org/10.1097/JTO.0000000000000119
- Automated instead of manual treatment planning? A plan comparison based on dose-volume statistics and clinical preference.Int J Radiat Oncol Biol Phys. 2018; 102: 443-450https://doi.org/10.1016/j.ijrobp.2018.05.063
- Pre-clinical validation of a novel system for fully-automated treatment planning.Radiother Oncol. 2021; 158: 253-261https://doi.org/10.1016/j.radonc.2021.03.003
- Deep learning-based delineation of head and neck organs at risk: Geometric and dosimetric evaluation.Int J Radiat Oncol Biol Phys. 2019; 104: 677-684https://doi.org/10.1016/j.ijrobp.2019.02.040
- Evaluation of automatic segmentation model with dosimetric metrics for radiotherapy of esophageal cancer.Front Oncol. 2020; 10: 1-9https://doi.org/10.3389/fonc.2020.564737
- Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study.Lancet Oncol. 2015; 16: 187-199https://doi.org/10.1016/S1470-2045(14)71207-0
- Lungtech, an EORTC phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective.Br J Radiol. 2015; 88https://doi.org/10.1259/bjr.20150036
- Statistical methods for assessing agreement between two methods of clinical measurement.Lancet. 1986; 327: 307-310https://doi.org/10.1016/S0140-6736(86)90837-8
- A challenge to traditional radiation oncology.Int J Radiat Oncol Biol. 2004; 60: 1241-1256https://doi.org/10.1016/j.ijrobp.2004.07.691
- Contouring variations and the role of atlas in non-small cell lung cancer radiation therapy: Analysis of a multi-institutional preclinical trial planning study.Pract Radiat Oncol. 2015; 5: e67-e75https://doi.org/10.1016/j.prro.2014.05.005
- Comparison of the automatic segmentation of multiple organs at risk in ct images of lung cancer between deep convolutional neural network-based and atlas-based techniques.Acta Oncol. 2019; 58: 257-264https://doi.org/10.1080/0284186X.2018.1529421
Lei Y, Liu Y, Dong X, Tian S, Wang T, Jiang X, et al. Automatic multi-organ segmentation in thorax CT images using U-Net-GAN. Proceedings of SPIE 10950, Med Imaging. 2019: Computer-Aided Diagnosis; 2019 Mar 13, San Diego, Cal, USA. SPIE, 2019;10950:262–7. doi: 10.1117/12.2512552.
- Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.Radiat Oncol. 2012; https://doi.org/10.1186/1748-717X-7-160
van Harten LD, Noothout JMH, Verhoeff JJC, Wolterink JM, Išgum I. Automatic segmentation of organs at risk in thoracic CT scans by combining 2D and 3D convolutional neural networks. In Petitjean C, Ruan S, Lamber Z, Dubray B, editors, SegTHOR 2019: Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images (SegTHOR2019). CEUR. 2019. (CEUR workshop proceedings). http://ceur-ws.org/Vol-2349/SegTHOR2019_paper_12.pdf.
- A multiple organ segmentation system for CT image series using Attention-LSTM fused U-Net.Multimed Tools Appl. 2022; 81: 11881-11895https://doi.org/10.1007/s11042-021-11889-7
- Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging.Phys Imaging Radiat Oncol. 2022; 21: 11-17https://doi.org/10.1016/j.phro.2022.01.002
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy