Abstract
Keywords
1. Introduction
- Glide-Hurst C.K.
- Paulson E.S.
- McGee K.
- Tyagi N.
- Hu Y.
- Balter J.
- et al.
- Glide-Hurst C.K.
- Paulson E.S.
- McGee K.
- Tyagi N.
- Hu Y.
- Balter J.
- et al.
H. Blaise T. Remen K. Ambarki E. Weiland B. Kuehn X. Orry et al. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5 T and 3 T and impact of individual factors on image quality Eur J Radiol 2021;142:109873. 10.1016/J.EJRAD.2021.109873.
2. Materials and methods
2.1 Sequences and patient setup
2.2 Phantom acquisitions and SNR evaluation
in seven different ROIs (center, left, right, superior, inferior, anterior, and posterior), in order to reflect the g factor [
2.3 Patient acquisitions
2.4 Quantitative lesion contrast evaluation
2.5 Qualitative rater evaluation
3. Results


4. Discussion
- Sartoretti T.
- Sartoretti E.
- Wyss M.
- Schwenk Á.
- van Smoorenburg L.
- Eichenberger B.
- et al.
- Yu V.Y.
- Zakian K.
- Tyagi N.
- Zhang M.
- Romesser P.B.
- Dresner A.
- et al.
- Yu V.Y.
- Zakian K.
- Tyagi N.
- Zhang M.
- Romesser P.B.
- Dresner A.
- et al.
- Brou Boni K.N.D.
- Klein J.
- Vanquin L.
- Wagner A.
- Lacornerie T.
- Pasquier D.
- et al.
Declaration of Competing Interest
Acknowledgement
Appendix A. Supplementary data
- Supplementary data 1
References
- Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance.Med Phys. 2021; 48 (e636-70)https://doi.org/10.1002/mp.14695
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. doi:10.1002/mp.12256.
- Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute.Magn Reson Med. 2021; 86: 2837-2852https://doi.org/10.1002/MRM.28911
Shi J, Liu Q, Wang C, Zhang Q, Ying S, Xu H. Super-resolution reconstruction of MR image with a novel residual learning network algorithm. Phys Med Biol 2018;63. doi:10.1088/1361-6560/AAB9E9.
Pham CH, Tor-Díez C, Meunier H, Bednarek N, Fablet R, Passat N, et al. Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput Med Imaging Graph 2019;77. doi:10.1016/J.COMPMEDIMAG.2019.101647.
Chen Y, Christodoulou AG, Zhou Z, Shi F, Xie Y, Li D. MRI Super-Resolution with GAN and 3D Multi-Level DenseNet: Smaller, Faster, and Better. [Preprint] 2020. doi:10.48550/arxiv.2003.01217.
- Accuracy of the Compressed Sensing Accelerated 3D-FLAIR Sequence for the Detection of MS Plaques at 3T.AJNR Am J Neuroradiol. 2018; 39: 454-458https://doi.org/10.3174/AJNR.A5517
- Common artefacts encountered on images acquired with combined compressed sensing and SENSE.Insights Imag. 2018; 9: 1107-1115https://doi.org/10.1007/s13244-018-0668-4
- Compressed sensing MRI: a review of the clinical literature.Br J Radiol. 2015; 88: 20150487https://doi.org/10.1259/bjr.20150487
- Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.Magn Reson Med. 2014; 71: 645-660https://doi.org/10.1002/MRM.24716
H. Blaise T. Remen K. Ambarki E. Weiland B. Kuehn X. Orry et al. Comparison of respiratory-triggered 3D MR cholangiopancreatography and breath-hold compressed-sensing 3D MR cholangiopancreatography at 1.5 T and 3 T and impact of individual factors on image quality Eur J Radiol 2021;142:109873. 10.1016/J.EJRAD.2021.109873.
Fornasier M, Rauhut H. Compressive Sensing. New York: Springer; 2011. doi:10.1007/978-0-387-92920-0_6.
- Compressed sensing MRI: a review.Crit Rev Biomed Eng. 2013; 41: 183-204https://doi.org/10.1615/CritRevBiomedEng.2014008058
- Compressed sensing MRI: A look at how CS can improve on current imaging techniques.IEEE Signal Process Mag. 2008; 25: 72-82https://doi.org/10.1109/MSP.2007.914728
- Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging.Magn Reson Med. 2005; 53: 684-691https://doi.org/10.1002/mrm.20401
- Optimized three-dimensional fast-spin-echo MRI.J Magn Reson Imaging. 2014; 39: 745-767https://doi.org/10.1002/jmri.24542
- Parallel magnetic resonance imaging.Phys Med Biol. 2007; 52: R15-R55https://doi.org/10.1088/0031-9155/52/7/R01
- Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA).Magn Reson Med. 2006; 55: 549-556https://doi.org/10.1002/mrm.20787
- Unexpected external markers artifact in 3D k-space based parallel imaging turbo spin-echo magnetic resonance imaging.Phys Med. 2021; 90: 150-157https://doi.org/10.1016/j.ejmp.2021.10.001
- Sparse MRI: the application of compressed sensing for rapid MR imaging.Magn Reson Med. 2007; 58: 1182-1195https://doi.org/10.1002/MRM.21391
- Advances in sensitivity encoding with arbitrary k-space trajectories.Magn Reson Med. 2001; 46: 638-651https://doi.org/10.1002/MRM.1241
- Accelerating SENSE using compressed sensing.Magn Reson Med. 2009; 62: 1574-1584https://doi.org/10.1002/MRM.22161
Magnetic Resonance Imaging Quality Control Manual, American College of Radiology, Committee on QA in MRI 2015.
Larkman DJ. The g-Factor and Coil Design. Parallel Imaging Clin. MR Appl., Heidelberg, Berlin: Springer Berlin Heidelberg; 2007, p. 37–48. doi:10.1007/978-3-540-68879-2_3.
- Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters.J Magn Reson Imaging. 2007; 26: 375-385https://doi.org/10.1002/JMRI.20969
- Comparison of contrast-enhanced T2 FLAIR and 3D T1 black-blood fast spin-echo for detection of leptomeningeal metastases.Investig Magn Reson Imaging. 2018; 22: 86https://doi.org/10.13104/IMRI.2018.22.2.86
Jeevanandham B, Kalyanpur T, Gupta P, Cherian M. Comparison of post contrast 3D T1 MPrage, 3D T1 space and 3D T2 FLAIR MR Images in evaluation of meningeal abnormalities at 3T MRI 2017:1–10. doi:10.1259/bjr.20160834.
- Statistical methods for assessing agreement between two methods of clinical measurement.Lancet. 1986; 327: 307-310https://doi.org/10.1016/S0140-6736(86)90837-8
- The R project in statistical computing.MSOR Connect. 2001; : 23-25https://doi.org/10.11120/MSOR.2001.01010023
- Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.Int J Radiat Oncol Biol Phys. 2004; 59: 300-312https://doi.org/10.1016/J.IJROBP.2004.01.026
- Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging.Eur J Radiol. 2019; 120https://doi.org/10.1016/J.EJRAD.2019.108667
- Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing.Invest Radiol. 2013; 48: 638-645https://doi.org/10.1097/RLI.0B013E31828A012D
- Combined compressed sensing and SENSE to enhance radiation therapy magnetic resonance imaging simulation.Adv Radiat Oncol. 2022; 7100799https://doi.org/10.1016/J.ADRO.2021.100799
- MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network.Phys Med Biol. 2020; 65075002https://doi.org/10.1088/1361-6560/AB7633
- Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data.Med Phys. 2021; 48: 3003-3010https://doi.org/10.1002/MP.14866
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy