Highlights
- •Magnetic resonance imaging was used to derive dose-painting prescriptions in glioma.
- •Dose prescriptions derived from magnetic resonance imaging are highly repeatable.
- •Dose-painting plans are more repeatable than their dose prescriptions.
Abstract
Background and purpose
Materials and methods
Results
Conclusions
Keywords
Abbreviations:
ADC (apparent diffusion coefficient), DP (dose prescription), GBM (glioblastoma), ICC (intraclass correlation coefficient), CTV (clinical target volume), GTV (gross tumour volume), PTV (planned target volume), VOI (volume of interest), CSF (cerebrospinal fluid), mpMRI (multiparametric MRI), TP (tumour probability), rBV (relative cerebral blood volume), rBF (relative cerebral blood flow), DSC (dynamic-susceptibility contrast), T1CE (T1-weighted post-contrast), FLAIR (fluid-attenuated inverse recovery), CV (coefficient of variation), RC (repeatability coefficient), σb2 (between-subject variance), σw2 (within-subject variance), ΔTP (difference in tumour probability between timepoint 2 and timepoint 1), SVZ (subventricular zones), EORTC (European Organisation for Research and Treatment of Cancer)1. Introduction
- Keall P.J.
- Brighi C.
- Glide-Hurst C.
- Liney G.
- Liu P.Z.Y.
- Lydiard S.
- et al.
C. Le Fèvre J.-M. Constans I. Chambrelant D. Antoni C. Bund B. Leroy-Freschini et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 – Radiological features and metric markers Crit Rev Oncol Hematol 2021;159:103230. 10.1016/j.critrevonc.2021.103230.
2. Materials and methods
2.1 Patient dataset
- Mamonov A.-B.-K.-C.-J.

2.2 Image pre-processing
2.3 Volume of interest delineation
2.4 Tumour probability modelling
2.5 Dose prescription mapping
2.6 Repeatability analysis
2.7 Statistical analysis
3. Results




Image type | σb2 | σw2 | ICC | within-subject CV % | RC(RCU-RCL) |
---|---|---|---|---|---|
ADC | 6179 (10-6 mm2/s)2 | 397 (10-6 mm2/s)2 | 0.94 | 1.7 | 55 (94–39) 10-6 mm2/s |
rBV | 0.14 | 0.14 | 0.48 | 27.6 | 1.05 (1.78–0.74) |
rBF | 0.10 | 0.01 | 0.89 | 9.4 | 0.31 (0.53–0.22) |
ADC-rBV TP | 0.00 | 0.00 | 0.87 | 2.2 | 0.04 (0.06–0.03) |
ADC-rBF TP | 0.00 | 0.00 | 0.88 | 2.1 | 0.04 (0.06–0.03) |
ADC-rBV DP | 0.51 Gy2 | 0.07 Gy2 | 0.87 | 0.4 | 0.76 (1.29–0.54) Gy |
ADC-rBF DP | 0.51 Gy2 | 0.07 Gy2 | 0.88 | 0.4 | 0.75 (1.27–0.53) Gy |
4. Discussion
Funding
Declaration of Competing Interest
Appendix A. Supplementary data
- Supplementary data 1
References
Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 2015;17:iv1–62. https://doi.org/10.1093/neuonc/nov189.
- Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma.N Engl J Med. 2005; 352: 987-996https://doi.org/10.1056/NEJMoa043330
- Heterogeneity maintenance in glioblastoma: A social network.Cancer Res. 2011; 71: 4055-4060https://doi.org/10.1158/0008-5472.CAN-11-0153
- Biologically adapted radiation therapy.Z Med Phys. 2018; 28: 177-183https://doi.org/10.1016/j.zemedi.2017.08.001
- Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality.Int J Radiat Oncol Biol Phys. 2000; 47: 551-560https://doi.org/10.1016/S0360-3016(00)00467-3
- Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions.Neuro Oncol. 2020; 22: 1073-1113https://doi.org/10.1093/neuonc/noaa106
- Conventional and advanced magnetic resonance imaging in patients with high-grade glioma.Q J Nucl Med Mol Imaging. 2018; 62: 239-253https://doi.org/10.23736/S1824-4785.18.03086-8
- ESTRO-ACROP guideline “target delineation of glioblastomas”.Radiother Oncol. 2016; 118: 35-42https://doi.org/10.1016/j.radonc.2015.12.003
- Advanced Imaging Techniques for Radiotherapy Planning of Gliomas.Cancers (Basel). 2021; 13: 1063https://doi.org/10.3390/cancers13051063
- Advanced Magnetic Resonance Imaging Methods for Planning and Monitoring Radiation Therapy in Patients With High-Grade Glioma.Semin Radiat Oncol. 2014; 24: 248-258https://doi.org/10.1016/j.semradonc.2014.06.008
- Imaging of intratumoral heterogeneity in high-grade glioma.Cancer Lett. 2020; 477: 97-106https://doi.org/10.1016/j.canlet.2020.02.025
- Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome.Clin Cancer Res. 2015; 21: 249-257https://doi.org/10.1158/1078-0432.CCR-14-0990
- Integrated MRI-guided radiotherapy — opportunities and challenges.Nat Rev Clin Oncol. 2022; https://doi.org/10.1038/s41571-022-00631-3
- Visualizing Glioma Infiltration by the Combination of Multimodality Imaging and Artificial Intelligence, a Systematic Review of the Literature.Diagnostics. 2021; 11: 592https://doi.org/10.3390/diagnostics11040592
- Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study.Neuro Oncol. 2020; 22: 412-422https://doi.org/10.1093/neuonc/noz180
- Imaging biomarker roadmap for cancer studies.Nat Rev Clin Oncol. 2017; 14: 169-186https://doi.org/10.1038/nrclinonc.2016.162
- Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac Consortium Imaging Biomarker Working Group.Eur J Cancer. 2021; 153: 64-71https://doi.org/10.1016/j.ejca.2021.04.041
C. Le Fèvre J.-M. Constans I. Chambrelant D. Antoni C. Bund B. Leroy-Freschini et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 – Radiological features and metric markers Crit Rev Oncol Hematol 2021;159:103230. 10.1016/j.critrevonc.2021.103230.
- Data From QIN GBM Treatment Response.Cancer Imaging Arch. 2016; https://doi.org/10.7937/k9/tcia.2016.nQF4gpn2
- The cancer imaging archive (TCIA): Maintaining and operating a public information repository.J Digit Imaging. 2013; 26: 1045-1057https://doi.org/10.1007/s10278-013-9622-7
- Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma.Am J Neuroradiol. 2015; 36: 1654-1661https://doi.org/10.3174/ajnr.A4374
- Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients.Transl Oncol. 2015; 8: 137-146https://doi.org/10.1016/j.tranon.2015.03.002
- Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation.PNAS. 2013; 110: 19059-19064https://doi.org/10.1073/pnas.1318022110
- Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas.Neuro Oncol. 2020; 22: 1262-1275https://doi.org/10.1093/neuonc/noaa141
- A global optimisation method for robust affine registration of brain images.Med Image Anal. 2001; 5: 143-156https://doi.org/10.1016/S1361-8415(01)00036-6
- Improved optimization for the robust and accurate linear registration and motion correction of brain images.Neuroimage. 2002; 17: 825-841https://doi.org/10.1016/S1053-8119(02)91132-8
- Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans Med Imaging. 2001; 20: 45-57https://doi.org/10.1109/42.906424
- On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function.Phys Med Biol. 2009; 54: 1483-1501https://doi.org/10.1088/0031-9155/54/6/007
- Phase I Three-Dimensional Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: Radiation Therapy Oncology Group Trial 98–03.Int J Radiat Oncol Biol Phys. 2009; 73: 699-708https://doi.org/10.1016/j.ijrobp.2008.05.034
- When to use agreement versus reliability measures.J Clin Epidemiol. 2006; 59: 1033-1039https://doi.org/10.1016/j.jclinepi.2005.10.015
- Intraclass correlations: Uses in assessing rater reliability.Psychol Bull. 1979; 86: 420-428https://doi.org/10.1037/0033-2909.86.2.420
- A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.J Chiropr Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
- Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment.Stat Methods Med Res. 2015; 24: 27-67https://doi.org/10.1177/0962280214537344
- Applications of the repeatability of quantitative imaging biomarkers: A review of statistical analysis of repeat data sets.Transl Oncol. 2009; 2: 231-235https://doi.org/10.1593/tlo.09268
- Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme.J Magn Reson Imaging. 2009; 29: 1199-1205https://doi.org/10.1002/jmri.21732
- Evaluating changes in radiation treatment volumes from post-operative to same-day planning MRI in High-grade gliomas.Radiat Oncol. 2012; 7: 1-8https://doi.org/10.1186/1748-717X-7-220
- Repeatability of dose painting by numbers treatment planning in prostate cancer radiotherapy based on multiparametric magnetic resonance imaging.Phys Med Biol. 2017; 62: 5575-5588https://doi.org/10.1088/1361-6560/aa75b8
- Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype.Neuro Oncol. 2007; 9: 424-429https://doi.org/10.1215/15228517-2007-023
- Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection.J Neurooncol. 2008; 89: 219-224https://doi.org/10.1007/s11060-008-9609-2
- Glioblastoma recurrence patterns near neural stem cell regions.Radiother Oncol. 2015; 116: 294-300https://doi.org/10.1016/j.radonc.2015.07.032
- Increased Subventricular Zone Radiation Dose Correlates With Survival in Glioblastoma Patients After Gross Total Resection.Int J Radiat Oncol. 2013; 86: 616-622https://doi.org/10.1016/j.ijrobp.2013.02.014
- Neural stem cells, the subventricular zone and radiotherapy: implications for treating glioblastoma.J Neurooncol. 2016; 128: 207-216https://doi.org/10.1007/s11060-016-2123-z
- Neural Stem Cells and the Origin of Gliomas.N Engl J Med. 2005; 353: 811-822https://doi.org/10.1056/NEJMra043666
- Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies.Int J Radiat Oncol. 2007; 68: 324-333https://doi.org/10.1016/j.ijrobp.2007.01.033
- New Considerations in Radiation Treatment Planning for Brain Tumors: Neural Progenitor Cell-Containing Niches.Semin Radiat Oncol. 2014; 24: 265-272https://doi.org/10.1016/j.semradonc.2014.06.007
- MRI techniques to measure arterial and venous cerebral blood volume.Neuroimage. 2019; 187: 17-31https://doi.org/10.1016/j.neuroimage.2018.02.027
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy