Abstract
Keywords
1. Introduction
- Landberg T.
- Chavaudra J.
- Dobbs J.
- Gerard J.P.
- Hanks G.
- Horiot J.C.
- et al.
2. Materials and methods
2.1 Patient selection and imaging
2.2 Target definition and margin
with the GTV-PTV margin to get target coverage in 90% of the population with the 75% isoline. Furthermore (6.4 mm) is the beam penumbra in lung tissue, the random error component due to breathing, and the residual systematic and random error components, respectively ([

2.3 Treatment planning
2.4 Validation of GTV-PTV margins
2.5 4D-dose accumulation
2.6 Dosimetric evaluation
2.7 DDM and -index
3. Results
3.1 Comparison of margin derivation methods

3.2 Plan comparison



3.3 midP-image reconstruction and dose accumulation accuracy

4. Discussion
- van de Lindt T.N.
- Fast M.F.
- van den Wollenberg W.
- Kaas J.
- Betgen A.
- Nowee M.E.
- et al.
Mercieca, S., Belderbos, J.S., De Jaeger, K., Schinagl, D.A., Van Zijp, N.v.d.V., Pomp, J., et al. Interobserver variability in the delineation of the primary lung cancer and lymph nodes on different four-dimensional computed tomography reconstructions. Radiother Oncol 2018;126:325–332. doi:10.1016/j.radonc.2017.11.020.
Declaration of Competing Interest
Acknowledgements
Supplementary data
- Supplementary data
References
- Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study.Cancer. 2004; 101: 1623-1631https://doi.org/10.1002/cncr.20539
- Stereotactic body radiation therapy for central early-stage NSCLC: Results of a prospective phase I/II trial.J Thorac Oncol. 2018; 13: 1727-1732https://doi.org/10.1016/j.jtho.2018.07.017
- Outcomes of hypofractionated high-dose radiotherapy in poor-risk patients with ”ultracentral” non–small cell lung cancer.J Thorac Oncol. 2016; 11: 1081-1089https://doi.org/10.1016/j.jtho.2016.03.008
- Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree.Pract Radiat Oncol. 2016; 6: e27-e33https://doi.org/10.1016/j.prro.2015.09.012
- Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.J Clin Oncol. 2006; 24: 4833-4839https://doi.org/10.1200/JCO.2006.07.5937
Jones, D. ICRU report 50–prescribing, recording and reporting photon beam therapy; 1994. doi:10.1118/1.597396.
- Report 62.J ICRU. 1999;32.; https://doi.org/10.1093/jicru/os32.1.Report62
- Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors.Int J Radiat Oncol Biol Phys. 2019; 104: 933-941https://doi.org/10.1016/j.ijrobp.2019.03.035
- Clinical outcomes of stereotactic MR-guided adaptive radiation therapy for high-risk lung tumors.Int J Radiat Oncol Biol Phys. 2020; 107: 270-278https://doi.org/10.1016/j.ijrobp.2020.02.025
- In silico trial of MR-guided midtreatment adaptive planning for hypofractionated stereotactic radiation therapy in centrally located thoracic tumors.Int J Radiat Oncol Biol Phys. 2018; 102: 987-995https://doi.org/10.1016/j.ijrobp.2018.06.022
- Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial.Adv Radiat Oncol. 2019; 4: 201-209https://doi.org/10.1016/j.adro.2018.10.003
- Po-1161: Feasibility of stereotactic body radiotherapy of (ultra)central lung tumors using an 1.5 T MR-linac.Radiother Oncol. 2021; 161: 5963-S964
- Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients.Int J Radiat Oncol Biol Phys. 2008; 70: 1229-1238https://doi.org/10.1016/j.ijrobp.2007.11.042
- An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs.Phys Med Biol. 2015; 60: 9003https://doi.org/10.1088/0031-9155/60/23/9003
- The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy.Int J Radiat Oncol Biol Phys. 2000; 47: 1121-1135https://doi.org/10.1016/S0360-3016(00)00518-6
- Errors and margins in radiotherapy.Semin Radiat Oncol. 2004; 14: 52-64https://doi.org/10.1053/j.semradonc.2003.10.003
- Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy.Radiother Oncol. 2015; 114: 361-366https://doi.org/10.1016/j.radonc.2015.02.011
- Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system.Int J Radiat Oncol Biol Phys. 2016; 94: 172-180https://doi.org/10.1016/j.ijrobp.2015.09.024
- Investigating the impact of patient arm position in an MR-linac on liver SBRT treatment plans.Med Phys. 2019; 46: 5144-5151https://doi.org/10.1002/mp.13826
- Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance.Int J Radiat Oncol Biol Phys. 2009; 74: 567-574https://doi.org/10.1016/j.ijrobp.2008.08.004
- ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment 4D cone beam CT.Radiat Oncol. 2020; 15: 1-10https://doi.org/10.1186/s13014-020-01496-5
- Measurement in medicine: the analysis of method comparison studies.J R Stat Soc Series D. 1983; 32: 307-317https://doi.org/10.2307/2987937
- Fast dose calculation in magnetic fields with GPUMCD.Phys Med Biol. 2011; 56: 5119https://doi.org/10.1088/0031-9155/56/16/003
- Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.Phys Med Biol. 2013; 59: 173https://doi.org/10.1088/0031-9155/59/1/173
- Lung stereotactic body radiotherapy with an MR-linac–quantifying the impact of the magnetic field and real-time tumor tracking.Radiother Oncol. 2016; 119: 461-466https://doi.org/10.1016/j.radonc.2016.04.019
- The distance discordance metric–a novel approach to quantifying spatial uncertainties in intra-and inter-patient deformable image registration.Phys Med Biol. 2014; 59: 733https://doi.org/10.1088/0031-9155/59/3/733
- MRI-guided mid-position liver radiotherapy: validation of image processing and registration steps.Radiother Oncol. 2019; 138: 132-140
- PD-0865 the delta index: a novel metric to assess dose accumulation uncertainty in MR-guided radiotherapy.Radiother Oncol. 2021; 161: S700-S702https://doi.org/10.1016/S0167-8140(21)07144-9
Finazzi, T., de Koste, J.R.v.S., Palacios, M.A., Spoelstra, F.O., Slotman, B.J., Haasbeek, C.J., et al. Delivery of magnetic resonance-guided single-fraction stereotactic lung radiotherapy. Phys Imaging Radiat Oncol 2020;14:17–23. doi:10.1016/j.phro.2020.05.002.
- MRI-guided lung SBRT: Present and future developments.Phys Med. 2017; 44: 139-149https://doi.org/10.1016/j.ejmp.2017.02.003
- Magnetic resonance imaging in precision radiation therapy for lung cancer.Transl Lung Cancer Res. 2017; 6: 689https://doi.org/10.21037/tlcr.2017.09.02
de Koste, J.R.v.S., Palacios, M.A., Bruynzeel, A.M., Slotman, B.J., Senan, S., Lagerwaard, F.J.. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 2018;102:858–866. doi:10.1016/j.ijrobp.2018.05.048.
- Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and trailing for lung stereotactic body radiation therapy.Med Phys. 2021; 48: 1520-1532https://doi.org/10.1002/mp.14772
- Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac.Phys Med Biol. 2021; 66105010https://doi.org/10.1016/j.radonc.2019.06.007
- The long-and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.Radiother Oncol. 2018; 126: 339-346https://doi.org/10.1016/j.radonc.2017.09.001
- Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy.Radiother Oncol. 2019; 135: 65-73https://doi.org/10.1016/j.radonc.2019.02.019
- Predicting tumour motion during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions based on real time MR.Radiother Oncol. 2018; 129: 456-462https://doi.org/10.1016/j.radonc.2018.07.025
- 4D-MRI driven MR-guided online adaptive radiotherapy for abdominal stereotactic body radiation therapy on a high field MR-Linac: Implementation and initial clinical experience.Clin Transl Radiat Oncol. 2020; 23: 72-79https://doi.org/10.1016/j.ctro.2020.05.002
- 4D CT image artifacts affect local control in SBRT of lung and liver metastases.Radiother Oncol. 2020; 148: 229-234https://doi.org/10.1016/j.radonc.2020.04.006
Mercieca, S., Belderbos, J.S., De Jaeger, K., Schinagl, D.A., Van Zijp, N.v.d.V., Pomp, J., et al. Interobserver variability in the delineation of the primary lung cancer and lymph nodes on different four-dimensional computed tomography reconstructions. Radiother Oncol 2018;126:325–332. doi:10.1016/j.radonc.2017.11.020.
- Tumor trailing for liver SBRT on the MR-Linac.Int J Radiat Oncol Biol Phys. 2019; 103: 468-478https://doi.org/10.1016/j.ijrobp.2018.09.011
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy